HVC interneurons are not renewed in adult male zebra finches.
نویسندگان
چکیده
Adult neurogenesis is a widespread phenomenon in many species, from invertebrates to humans. In songbirds, the telencephalic region, high vocal center (HVC), continuously integrates new neurons in adulthood. This nucleus consists of a heterogenous population of inhibitory interneurons (HVC(IN)) and two populations of projection neurons that send axons towards either the robust nucleus of the arcopallium (HVC(RA)) or the striatal nucleus area X (HVC(X)). New HVC neurons were initially inferred to be interneurons, because they lacked retrograde labelling from the HVC's targets. Later studies using different tracers demonstrated that HVC(RA) are replaced but HVC(X) are not. Whether interneurons are also renewed became an open question. As the HVC's neuronal populations display different physiological properties and functions, we asked whether adult HVC indeed recruits two neuronal populations or whether only the HVC(RA) undergo renewal in adult male zebra finches. We show that one month after being born in the lateral ventricle, 42% of the newborn HVC neurons were retrogradely labelled by tracer injections into the RA. However, the remaining 58% were not immunoreactive for the neurotransmitter GABA, nor for the calcium-binding proteins, parvalbumin (PA), calbindin (CB) and calretinin (CR) that characterize different classes of HVC(IN). We further established that simultaneous application of parvalbumin, calbindin and calretinin antibodies to HVC revealed approximately the same fraction of HVC neurons, i.e. 10%, as could be detected by GABA immunoreactivity. This implies that the sum of HVC(IN) expressing the different calcium-binding proteins constitute all inhibitory HVC(IN). Together these results strongly suggest that only HVC(RA) are recruited into the adult HVC.
منابع مشابه
Song decrystallization in adult zebra finches does not require the song nucleus NIf.
In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory fe...
متن کاملTitle: Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus 1
35 In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., 36 crystallized) song to slowly degrade, presumably because of the resulting distortion in 37 auditory feedback. How and where distorted feedback interacts with song motor 38 networks to induce this process of song decrystallization remains unknown. The song 39 premotor nucleus HVC is a potential site wh...
متن کاملState and neuronal class-dependent reconfiguration in the avian song system.
Sensory systems may adapt to behavioral requirements through state-dependent changes. In the forebrain song-system nucleus HVc of zebra finches, state-dependent auditory responses have been described in multiunit recordings. Here we report on behavioral state-dependent changes in the activity of distinct HVc neuronal classes. HVc projection neurons were identified by electrically stimulating HV...
متن کاملVocal control neuron incorporation decreases with age in the adult zebra finch.
In adult male zebra finches, high vocal center (HVC) neurons continuously die and are replaced. Many of these cells are projection neurons that form part of the efferent pathway controlling learned song production. Although it is known that HVC receives new neurons well into adulthood, it is unknown whether this occurs at a constant rate or declines with adult age. We used [3H]thymidine to labe...
متن کاملSexual dimorphism of auditory activity in the zebra finch song system.
While the tracheosyringeal motor neurons of anesthetized male zebra finches fire in response to acoustic stimuli, the same motor neurons in females show no such response. Females masculinized by estradiol implants on Days 1 or 2 after hatching may develop auditory responses in their tracheosyringeal motor neurons; the presence of the response is directly related to the degree of masculinization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 25 6 شماره
صفحات -
تاریخ انتشار 2007